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Abstract
In this paper, we study the one-dimensional long-range Ising model with a spin–
spin interaction that decays as 1/r1+σ using the mean-field renormalization
group. The critical coupling Kc and critical exponents yt and yh are computed
using cluster sizes of up to sixteen spins. We then apply the alternating-alpha
VBS (Vanden Broeck–Schwartz) transformation to accelerate the convergence
of results for different cluster sizes.

1. Introduction

The long-range Ising model with ferromagnetic interactions that decay as 1/rd+σ has been
studied for the past three decades and some of the most important results are presented here.
For the 1D case, Dyson [1] has shown that a phase transition occurs when 0 < σ < 1 and
no phase transition occurs when σ > 1. For σ = 1, the magnetization is discontinuous at
a finite temperature and this is known as the Thouless effect [2, 3]. Several estimates for
the critical properties have also been obtained using finite-range scaling [4], Padé approx-
imants [5], mean-field theory [6], perturbation theory [7], Bethe lattice approximation [8] and
the coherent anomaly method [9]. In higher dimensions, Fisher, Ma and Nickel [10] have
obtained critical exponents for general spin models with long-range interactions that decay as
1/rd+σ using renormalization group expansions. The critical properties of the long-range Ising
model in one, two and three dimensions have also been studied using Monte Carlo simulations
by Luijten and Blöte [11–13] up to a relatively high accuracy.

There are several reasons for studying long-range models with interactions that decay as
1/rd+σ and one is that interactions such as the van der Waals or dipole–dipole forces which
occur commonly in nature decay as 1/rd+σ . It has also been claimed that screened Coulomb
interactions in ionic systems lead to effectively 1/rd+σ decaying interactions [14, 15] while
critical exponents of the long-range universality class have been observed experimentally in a
ferromagnetic phase transition [16]. Casimir forces between uncharged particles in a critical
fluid arising from critical fluctuations have also been shown to exhibit 1/rd+σ dependence [17]
while Yuval and Anderson [18] have shown that the Kondo problem corresponds to the
one-dimensional Ising model with a combination of inverse-square and nearest-neighbour
interactions. Finally, these long-range models allow us to study phenomena above the upper
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critical dimension du in low-dimensional systems because du is σ -dependent and we can set
d > du by varying σ [11]. In this paper, we first calculate the critical properties of the
1D long-range Ising model using the mean-field renormalization group or MFRG for various
cluster sizes. This is followed by an extrapolation using the VBS (Vanden Broeck–Schwartz)
transformation to accelerate the convergence of the sequence. In the next few sections,
we describe the MFRG and VBS transformation techniques used to investigate the critical
properties of the long-range Ising model. We then present the results and our conclusions.

2. The MFRG method

Several years ago, a simple and versatile scheme known as the mean-field renormalization
group or MFRG was introduced by Indekeu, Maritan and Stella [19,20]. This method combines
the classical mean-field theory with the modern approach of the renormalization group mapping
and it establishes an important link between the classical and modern theories of critical
phenomena. Apart from its theoretical significance, the MFRG also has the advantage of easy
and wide applicability and it has been used extensively to study a variety of problems such as
those of geometrical critical phenomena and percolation [21,22], dynamic critical phenomena
in Glauber models [23] and in quantum spin systems [24], the ANNNI model [25], mixed-spin
systems [26] and the site–bond-correlated Ising model [27]. In this paper, we use the MFRG
method to study the one-dimensional Ising model with long-range interactions that fall off as
1/r1+σ described by the following reduced Hamiltonian:

H = −βH = K
∑
i,j

SiSj

r1+σ
ij

+ h
∑
i

Si (1)

whereK indicates the strength of the ferromagnetic interaction, h is the reduced magnetic field
and rij is the distance between the ith and j th sites.

In the mean-field renormalization group scheme, which is closely related to the phenom-
enological renormalization group [28], the approximate magnetization per spin is calculated
for two clusters of different sizes N , N ′ using the mean-field approximation. The condition
that the symmetry-breaking mean-field spins b, b′ and the magnetizations per spin mN,m

′
N ′

scale in the same way is then imposed and we have

mN ′(K ′, h′, b′) = ld−yhmN(K, h, b) (2)

b′ = ld−yhb (3)

where l = (N/N ′)1/d is the length scaling factor. If we carry out an expansion of mN to first
order in b, h and an expansion of m′

N ′ to first order in b′, h′, we obtain the following:

mN(K, h, b) = AN(K)b + BN(K)h (4)

mN ′(K ′, h′, b′) = AN ′(K ′)b′ + BN ′(K ′)h′. (5)

Substituting equations (4), (5) into equation (2) and using equation (3) with h′ = Lyhh, we have

AN(K) = AN ′(K ′) (6)

BN(K) = l2yh−dBN ′(K ′) (7)

lyt =
(
∂K ′

∂K

)
K=Kc

=
(
∂AN(K)

∂K

)
K=Kc

/(
∂AN ′(K ′)

∂K ′

)
K ′=Kc

. (8)

Equation (6) can be used to obtain the critical coupling Kc, which can then be substituted into
equations (7) and (8) to yield the exponents yt and yh. Next, let us look at the procedure used
to calculate the mean-field magnetization for the 1D long-range Ising model and assume the
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presence of an infinite number of symmetry-breaking mean-field spins on both sides of the
cluster. The reduced cluster Hamiltonian is

HN(K, h, b, Si) = K

N∑
i,j=1,i>j

SiSj

r1+σ
ij

+ h

N∑
i=1

Si + Kb

N∑
i=1

( ∞∑
k=N−i+1

1

k1+σ
+

∞∑
l=i

1

l1+σ

)
Si (9)

whereN denotes the number of cluster spins and the first term accounts for interactions between
spins within the cluster. The second is the magnetic field term and the third term accounts for
interactions between the mean-field spins and the cluster spins.

3. The VBS transformation

The next step is to provide the motivation for the application of the VBS transformations to
the MFRG results and to do this we consider the finite-size scaling relation [29] for a system
of linear dimension L in d dimensions:

f (t, h,K3, . . . , L
−1) = L−df (Lyt t, Lyhh, Ly3K3, . . . , 1) (10)

where the Kn are the scaling fields and f is the singular part of the free energy per spin. If we
differentiate equation (10) w.r.t. h, we get the finite-size scaling relation for the magnetization:

m(t, h,K3, . . . , L
−1) = Lyh−dm(Lyt t, Lyhh, Ly3K3, . . . , 1)

= Lyh−dYm(L
yt t, Lyhh, Ly3K3, . . .). (11)

Next, let us define a renormalization between coupling constants for clusters of different sizes
L and L′ as follows:

L′ynK ′
n = LynKn (12)

to apply for all coupling constants. Substitution of equation (12) into equation (11) yields

m(t, h,K3, . . . , L
−1) =

(
L

L′

)yh−d

m(t ′, h′,K ′
3, . . . , L

′−1) (13)

which is exactly the same as equation (2); thus we can take equation (12) as the defining
equation for the MFRG. It has also been shown that the critical properties obtained using the
RG transformation of equation (12) are given by

Tc(L,L
′) = Tc + k1L

y3−1/ν + · · · (14)

yt (L,L
′) = yt + k2L

y3 + · · · (15)

yh(L,L
′) = yh + k3L

y3 + · · · (16)

where y3 is the exponent of the leading irrelevant variable K3 and the cluster sizes are L and
L′ = L−1 [30]. To show that the estimates of the critical properties are of the above form, we
first expand the correlation length and its derivatives in powers of Ly3K3 at the critical point.
Next, we express the critical properties in terms of the correlation length and its derivatives
and substitute the expansions that we have obtained into these equations. Finally, we perform
an expansion in powers of L on the expressions for the critical properties after the above
substitutions to obtain equations (14) to (16).

From the above arguments, we see that the critical properties obtained from the MFRG
have the form

XL = X∞ + C1LL
−x1 + C2LL

−x2 + · · · (17)

whereX∞ is the true value of the critical property andXL is the value obtained using clusters of
sizesL,L−1. We now introduce an extrapolation technique known as the VBS transformations
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developed by Vanden Broeck and Schwartz [31] and we will see that it can be applied to
improve our MFRG results. In this technique, we first have a sequence of approximants AL

which converge to a limiting value limL→∞ AL = A∞. We then form a table of approximants
[L,M] by using the following equations:

[L, 0] = AL (18)

[L,−1] = ∞ (19)
1

[L,M + 1] − [L,M]
+

αM

[L,M − 1] − [L,M]

= 1

[L + 1,M] − [L,M]
+

1

[L − 1,M] − [L,M]
(20)

where the choice of αM depends on the nature of the sequence. For approximants AL which
are of the form given in equation (17), Hamer and Barber [32] have shown that the appropriate
form of αM is given by

αM = −1 − (−1)M

2
(21)

and, in our calculations, the initial approximants are generated by evaluating the critical
properties using the MFRG. We then set the parameter L to be the length of the cluster and
apply the transformations to generate the improved estimates. It can also be seen from equation
(20) that the iterated values are dependent on the differences between the approximants; thus
the sensitivity of the results to the round-off errors increases with every iteration and it is
therefore necessary to perform the calculation up many more decimal places than are required
in the final result. To estimate the error in the results, we utilize the ‘L-shift’ procedure [32]
in which we multiply all of the initial approximants [L, 0] by 1 + ε/L before performing the
VBS transformation. This procedure is then repeated for various values of ε ranging from −1
to 1 and the stability of the final iterates f (ε) = [L,Mf ] with respect to ε is studied. It can
be seen that such a multiplication retains the general form of equation (17) and this justifies
the application of the VBS transformation to the new sequence. An optimal value of εo is then
chosen which corresponds to a region where f (ε) is reasonably stable with respect to changes
in ε, and f (εo) provides a good estimate of the value of the critical property while the variation
of f (ε) in this region provides a good measure of its error.

4. Results and discussion

Following the procedure in the previous section, we obtain approximants of Kc for σ = 0.1
by applying equations (30) and (31) to Kc-values obtained using the MFRG. We then list the
approximants in table 1 up to 12 significant figures though the actual calculation was done
with 20 significant figures. We then repeat the same procedure for the critical coupling Kc as
well as the critical exponents yt and yh in the range 0.1 � σ � 0.9 and the final results are
presented in table 2 along with the results from other calculations.

In these two tables, ‘FRS’ represents values from finite-range scaling [4], ‘PA’ from
Padé approximants [5], ‘BL 1’ and ‘BL 2’ from Bethe lattice approximation [8], ‘PER’ from
perturbation theory [7], ‘MFA’ from mean-field theory [6] and ‘CAM’ from the coherent
anomaly method [9]. Also, a number in brackets, for the Monte Carlo simulation results [11]
and our results, represents the error in the last digit of the estimate.

It can be seen from table 2(a) that the VBS transformations yieldsKc-values which are very
close to the Monte Carlo simulation values. As for the critical exponent yt , the extrapolated
values show some deviation in the high and intermediate σ -regions, but it can be seen that the
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Table 1. The approximant table for Kc at σ = 0.1.

L Kc = [L, 0] [L, 1] [L, 2] [L, 3]

2 0.0496219822605
3 0.0491712323474 0.0485403468371
4 0.0489083234386 0.0483783568836 0.0475794463221
5 0.0487325922739 0.0482709667042 0.0475885877659 0.0476034029956
6 0.0486053134760 0.0481937081926 0.0475942409961 0.0476061126560
7 0.0485080966022 0.0481350269400 0.0475980705908 0.0476079190477
8 0.0484309762437 0.0480886963914 0.0476008279717 0.0476092188069
9 0.0483680369694 0.0480510391960 0.0476029033466 0.0476101992939

10 0.0483155240336 0.0480197318767 0.0476045191086 0.0476109646079
11 0.0482709283188 0.0479932281679 0.0476058110148 0.0476115781424
12 0.0482325032627 0.0479704557498 0.0476068664832 0.0476120781096
13 0.0481989920826 0.0479506456219 0.0476077441957 0.0476125051114
14 0.0481694651805 0.0479332307401 0.0476084852829
15 0.0481432188080 0.0479177830436
16 0.0481197095071

L [L, 4] [L, 5] [L, 6] [L, 7]

6 0.0476160821863
7 0.0476166721871 0.0476168914238
8 0.0476168320287 0.0476169001460 0.0476168917180
9 0.0476168797916 0.0476169937946 0.0476169587493 0.0476169237680

10 0.0476169134521 0.0476168837180 0.0476168855873
11 0.0476166585428 0.0476168857495
12 0.0476187492191

results yielded by most methods also show problems when it comes to yt and our results are
already better than most of the other estimates. For the yh-values, it can be seen that there is
good agreement with the simulation results throughout the entire range except near σ ∼ 1 and
this could be due to the crossover to short-range behaviour. It can generally be seen that the
results for the critical properties are very good in the region σ ∼ 0 and this could be due to the
fact that the MFRG method works better when the interaction is very long range. It can also
be seen that the critical couplings are generally higher in accuracy than the exponents and this
can again be attributed to the underlying MFRG approach which tends to yield better results
for the critical coupling. We also see that the convergence rate of the approximants in the VBS
transformation scheme tends to decrease with increasing σ in the region 0 < σ < 1/2. We
can explain this observation by substituting yt = σ and y3 = 2σ − d [11] into equations (14)
to (16) to yield

Tc(L) ≈ Tc + aLσ−d (22)

yt (L) ≈ yt + bL2σ−d (23)

yh(L) ≈ yh + cL2σ−d (24)

and we see that the convergence rate of each of the terms decreases with increasing σ as
expected.

We can see from tables 2(a) to 2(c) that the VBS transformation produces estimates
comparable in accuracy to the Monte Carlo simulation values for most values of σ , yet it
requires significantly less computational resources. Thus we can obtain estimates of Kc, yt
and yh to an accuracy higher than that of most existing estimates by simply carrying out the
calculation with larger clusters. This is relatively straightforward as the only requirement for
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Table 2. (a) Kc-estimates, (b) yt -estimates and (c) yh-estimates from various sources. (MC ≡
Monte Carlo.)

(a)
σ VBS PER MFA CAM MC

0.1 0.04761693(20) 0.0481 0.04785 0.04777 0.0476168(6)
0.2 0.0922344(52) — 0.09340 0.0928 0.0922314(15)
0.3 0.136099(91) 0.144 0.1385 0.1375 0.136110(2)
0.4 0.181113(20) — 0.1841 0.183 0.181150(3)
0.5 0.229167(33) 0.250 0.2308 0.231 0.229155(6)
0.6 0.281831(62) — 0.2791 0.282 0.281800(5)
0.7 0.341244(13) 0.391 0.3291 0.338 0.341237(4)
0.8 0.411060(77) — 0.3811 0.401 0.411090(8)
0.9 0.499602(47) 0.65 0.4349 0.4728 0.49963(2)

σ VBS BL 1 BL 2 FRS PA

0.1 0.04761693(20) �0.04726 �0.09456 0.0505 —
0.2 0.0922344(52) �0.08947 �0.1792 0.0923 0.0926
0.3 0.136099(91) �0.1273 �0.2558 0.1362 0.1370
0.4 0.181113(20) �0.1615 �0.3258 0.1815 0.1825
0.5 0.229167(33) �0.1923 �0.3903 0.230 0.2307
0.6 0.281831(62) �0.2203 �0.4502 0.282 0.2832
0.7 0.341244(13) �0.2458 �0.5066 0.341 0.343
0.8 0.411060(77) �0.2691 �0.5596 0.411 0.412
0.9 0.499602(47) �0.2903 �0.6101 0.499 0.499

(b)
σ VBS FRS PA PER CAM Exact + MC

0.1 0.099951(43) 0.1096 — 0.09542 — 0.10
0.2 0.200022(65) 0.2041 — — — 0.20
0.3 0.29973(82) 0.2933 — 0.2564 — 0.30
0.4 0.3890(16) 0.3690 — — — 0.40
0.5 0.463(13) 0.4274 — 0.3559 — 0.50
0.6 0.5030(34) 0.4630 0.53 — 0.472 0.502(8)
0.7 0.50134(24) 0.4710 0.56 0.3759 0.461 0.491(10)
0.8 0.4553(30) 0.4529 0.53 — 0.446 0.457(10)
0.9 0.4093(32) 0.3802 0.50 0.2564 0.435 0.379(15)

(c)
σ VBS Exact + MC

0.1 0.550000(16) 0.55
0.2 0.600041(38) 0.60
0.3 0.650102(65) 0.65
0.4 0.70068(34) 0.70
0.5 0.75085(51) 0.75
0.6 0.8003(10) 0.798(4)
0.7 0.85085(51) 0.848(3)
0.8 0.90064(61) 0.896(4)
0.9 0.9446(15) 0.9508(10)

large-cluster calculations is more computational power and this is readily available. Another
advantage of the VBS transformation is that it is one of the few methods that produces good
estimates of the exponent yh and our results for the 1D case support the conjecture that
yh = (σ + d)/2, first suggested in [10] and confirmed in [11, 13]. We can also extend the
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present calculation to higher-dimensional long-range spin systems and hope to generate high-
accuracy results as in the 1D case as this is a relatively unexplored problem.
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